

		What is Divisibility?		
		Definition		
		If <i>n</i> and <i>d</i> are integers and $d \neq 0$ then		
		n is divisible by d if, and only if, n equals d times some integer.		
	Instead of " n is divisible by d ," we can say that			
		 n is a multiple of d, or d is a factor of n, or d is a divisor of n, or d divides n. 		
		The notation $\mathbf{d} \mathbf{n}$ is read " <i>d</i> divides <i>n</i> ." Symbolically, if <i>n</i> and <i>d</i> are integers and $d \neq 0$:		
		$d \mid n \Leftrightarrow \exists \text{ an integer } k \text{ such that } n = dk.$		
	<u>oles</u>	✓ Is 21 divisible by 3? ✓ Does 5 divide 40? ✓ Does 7 42?		
	am	✓ Is 32 a multiple of -16 ? ✓ Is 6 a factor of 54? ✓ Is 7 a factor of -7 ?		
	EX	✓ If k is any integer, does k divide 0 ? (4)		

Transitivity	of Divisibility	
Theorem 4.3.3 Transitivity of Divisibility		
For all integers a, b, and c, if a divides b and b divides c, then a divides c.		
Proof:		
Starting Point: Suppose a, b , and c are particular but arbitrarily chosen integers such that $a \mid b$ and $b \mid c$. We need to show: $a \mid c$.		
since $a \mid b$, and since $b \mid c$, Hence, But (a Hence As <i>rs</i> is an intege	b = ar for some integer r. c = bs for some integer s. c = bs = (ar)s r)s = a(rs) by the associative law c = a(rs). r, then $a \mid c$.	
,	-	

(15)

